The Traveling Firefighter Problem

Majid Farhadi

Alejandro Toriello

Prasad Tetali

Outline

- [8 min] Introducing L_p -TSP
 - A new objective, to be potentially more efficient, fair, unified, ...
 - Exact optimization can be hard, even for trees!
 - Let's approximate ©
- [6 min] Reduction to Segmented-TSP
 - Enabling PTAS for:
 - Unweighted Euclidean metric
 - Weighted trees
- [6 min] General Metrics
 - Simultaneous 8 approximation for all-norm-TSP
 - 5.65 approximation for Traveling Firefighter Problem (i.e., L_2 -TSP)
- Open Problems

"Optimal" Routing

Input: the origin, a set of destinations, and the underlying distances.

Output: an order/permutation to visit the destinations, starting at the origin.

Objective: minimize,

> The latest visit time, equivalently total distance to travel

- Traveling Salesperson Problem [1832]
- ➤ The average/sum of visit times
 - Traveling Repair/Delivery-person Problem [Afrati et al. '85]

- > A norm of the visit times, e.g.,
- $\triangleright L_2$ -norm of the visit times, equiv. Sum of Squares of visit times
 - Traveling Firefighter Problem

L_p -TSP

• Objective: minimize the p-norm of the visit times $T: V \to \mathbb{R}$.

$$||T||_p := \left(\sum_{v \in V} |T_v|^p\right)^{\frac{1}{p}}$$

Interpolated other combinatorial optimization problems:

 Set Cover vs Min Sum Set Cover [Feige, Lovász, Tetali '04, Golovin-Gupta-Kumar-Tangwongsan '08, Bansal-Batra-Farhadi-Tetali '21]

Ride-sharing

Scheduling

Wildfires & Pandemics

Applications

Efficiency

Robustness

Does the objective affect the solution?

σ : Route	T: Visit Times	$\ T\ _{\infty}$	$\ T\ _1$	$ T _2$
OABC	$(1+\varepsilon,0,3+2\varepsilon,4+2\varepsilon)$	$4+2\varepsilon$	8+5arepsilon	$\sqrt{26+30\varepsilon+9\varepsilon^2}$
OBCA	$(5+\varepsilon,0,1,2)$	$5 + \varepsilon$	8 + <i>ε</i>	$\sqrt{30+10\varepsilon+\varepsilon^2}$

$$||T||_p := \left(\sum_{v \in V} |T_v|^p\right)^{\frac{1}{p}}$$

Does the objective affect complexity?

- Yes
 - even for trees
 - $p = \infty$: Linear Time Solvable
 - p = 1 : Strongly NP-hard [Sitters '02]

 ✓ PTAS [Sitters '14]
 - \circ p ∈ (1, ∞)

Active Extensive Literature

	TSP (L_{∞} -TSP)	TRP (L_1 -TSP)	
Constant factor approximated on general metrics	3/2 [Christofides '76, Serdyukov '78] 3/2-1e-36 [Karlin-Klein-Oveis Gharan '21]	O(1) [Blum-Chalasani-Coppersmith- Pulleyblank-Raghavan-Sudan '94] 7.18 [Goemans-Kleinberg '96] 3.59 [Chaudhuri-Godfrey-Rao-Talwar '03]	
Inapproximable for general metrics within	1 + 1/122 [Karpinski-Lampis-Schmied '15]		
1+arepsilon approximation	Euclidean [Arora '96, Mitchel '96] Planar [Grigni-Koutsoupias-Papadimitriou '95, Arora-Grigni-Karger-Klein-Woloszyn '98, Klein '05] Path ⇒ Tour [Traub-Vygen-Zenklusen '19]	Line metric [Afrati-Cosmadakis- Papadimitriou-Papageorgiou- Papakostantinou '86] Weighted trees, Euclidean plane [Sitters '14]	

L_p -TSP \Rightarrow Segmented-TSP

Theorem 1 [FTT]: There is a PTAS for L_p -TSP on weighted tree-metrics, and unweighted 2D-Euclidean.

Reduction to k-TSP enables a QPTAS

- Generalizing the result of [Archer-Williamson '03] for TRP
- Requiring $O(\varepsilon^{-1}\log n)$ TSP sub-routes
- For a PTAS, we need a more general sub-problem

Idea: DP reduction to Segmented-TSP [Sitters '14], at the cost of $(1 + \varepsilon)$ multiplicative error.

Segmented-TSP:

- A generalization of k-TSP
- Given k deadlines, $t_1, ..., t_k$, and numbers $n_1 \le ... \le n_k$
- Decide whether it is possible to visit n_i vertices by time t_i , $\forall i$
- If the answer is yes, an α -approx. solution is a solution for $\{\alpha t_i\}_{[k]}$, $\{n_i\}_{[k]}$
- Segmented-TSP has PTAS for tree as well as Euclidean metrics [Sitters '14]

The Reduction

- Discovering structure in (approximately) optimal solutions
 - Quantizing distances, allows the following, WLOG

$$d(i,j) \in \{0\} \cup [O(n^2/\varepsilon)] = \{0\} \cup [\tilde{O}(n^2)] \quad \forall i,j$$

- Enables breaking into $\gamma = O(\log n \cdot \varepsilon^{-1})$ shortest paths between time spots

$$1, (1+\varepsilon), \cdots, (1+\varepsilon)^{\gamma}$$

Returning to the origin to further reduce the number of segments to

$$k = O(1 + \varepsilon^{-2})$$
 $c := (1 + \varepsilon)^k \ge 3$

• At times $\lambda_i := (1+\varepsilon)^{-j} \cdot c^i$, $\forall i \geq 0$

The Reduction (ctnd.)

• Generalizing the result by [Sitters '14]. For any L_p -TSP,

Lemma [FTT]: \exists a near optimal route, visiting new vertices during $[3\lambda_{i-1}, \lambda_i]$, remaining at the origin until $3\lambda_i$.

- Finding the best structured solution through Dynamic Programming
 - DP[i,d], assuming d vertices are visited up to λ_i , stores their minimum possible contribution to the objective
 - Update: considering $O(n^k)$ cases
 - corresponding to the # of vertices visited up to

$$\lambda_{i-1}, 3\lambda_{i-1} + \lambda_i \cdot (1+\varepsilon)^{-k}, \cdots, 3\lambda_{i-1} + \lambda_i$$

• Each defines be a segmented-TSP instance with $k = O(1 + \varepsilon^{-2})$

Lemma [FTT]: Any α approximation for Segmented-TSP enables a $(1 + \varepsilon)\alpha$ approximation for L_p -TSP.

Cost of the optimal solution to a wrong problem

• L_{∞} -TSP Major wildfires in Dec 2019

Can be (multiplicatively) unbounded

All-norm-TSP

 Can we find a route that is approximately optimal with respect to any norm of the visit times vector?

$$\min_{\sigma} \sup_{\|\cdot\|} \frac{\|T_{\sigma}\|}{\min_{\sigma' \in} \|T_{\sigma'}\|}$$

• [Golovin-Gupta-Kumar-Tangwongsan '08] introduced a 16-approximation.

Theorem 2 [FTT]: We can find a route that is, simultaneously, 8-approximate with respect to any norm of T.

Idea: Partial Covering + a mild relaxation of k-MST

The Partial Covering Algorithm

- Introduced by [Blum-Chalasani-Coppersmith-Pulleyblank-Raghavan-Sudan '94] for TRP
- Developed through [Goemans-Kleinberg '98, Chaudhuri-Godfrey-Rao-Talwar '03]
- Leads to 16-approximate all-norm-TSP [Golovin-Gupta-Kumar-Tangwongsan '08]
 - b = 1 (WLOG, the distance of the closest destination to the origin)
 - c = 2

```
1: procedure Geometric-Covering(V, s, d)
       Algorithm Parameters: b \in (0, \infty), c \in (1, \infty)
       i \leftarrow 0
3:
       while there remains destinations to visit do
4:
                                   ▶ Conducting sub-tours
5:
           C_i \leftarrow \text{a maximal route of length} \leq b \cdot c^i.
6:
           Travel through C_i (and return to the origin)
7:
           i \leftarrow i + 1
8:
       return an ordering \sigma of V according to their
9:
   (first) visit time through the above loop.
```

In line-6, we use (DFS of) a *good-k-tree*:

- [Chaudhuri-Godfrey-Rao-Talwar '03]
- a mild relaxation of k-MST
- i.e., not larger than a k-TSP / k-stroll
- found using a primal-dual method

Steps in the Analysis

- Let $T_k^{\text{OPT}} \in [2^i, 2^{i+1})$
- There is a k-path, no longer than 2^{i+1}
- We have a good-k-tree, of total length no more than 2^{i+1}
- Hence, C_{i+1} has at least k vertices
- Finally, we have 8-submajorization of the optimal route by ALG.

$$T_k^{\text{ALG}} \le \sum_{j=0}^{i+1} |C_j| \le \sum_{j=0}^{i+1} 2 \times 2^j < 2^{i+3} \le 8T_k^{\text{OPT}}$$

Approximate All-norm-TSP can be impossible

Theorem 3 [FTT]: Guaranteeing an α -approximate all-norm-TSP, for line metric, is impossible for $\alpha \leq 1.78$.

- Starting at x = 0, and destinations at $\{-1\} \cup \{b^i 1 : i \in [n]\}$
- This gives $\alpha \ge 1.67$ for b = 1.001, n = 2100
- The following numerical example, w/ similar structure, gives $\alpha \geq 1.78$

Improved approximation for TFP

• Choosing $b = c^U$, with U uniformly distributed over [0,1]

$$\frac{\mathbb{E}[(T_k^{\text{ALG}})^2]}{(T_k^{\text{OPT}})^2} \le \frac{c+1}{c-1} \cdot 2c^2 / \ln c$$

• Optimizing, for $c \simeq 2.54$ we have

$$\mathbb{E}[\|T^{\text{ALG}}\|_2^2] \le 31.82\|T^{\text{ALG}}\|_2^2$$

• Resulting $\sqrt{31.82} \simeq 5.641$ approximation for TFP.

Theorem 4 [FTT]: TFP can be 5.65 approximated on general metrics.

- Unified algorithms for L_p TSP Problems?
- [in]approximability, e.g., what is the hardest L_p TSP?
- Multiple Vehicle/Depots
- Online problem
- Verifying the best norm for containing wildfires, pandemics, etc.

Thank you for joining!