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Outline

* [8 min] Introducing L,-TSP
* A new objective, to be potentially more efficient, fair, unified, ...
* Exact optimization can be hard, even for trees!
* Let’s approximate ©

* [6 min] Reduction to Segmented-TSP

* Enabling PTAS for:
* Unweighted Euclidean metric
* Weighted trees

e [6 min] General Metrics

e Simultaneous 8 approximation for all-norm-TSP
* 5.65 approximation for Traveling Firefighter Problem (i.e., L,-TSP)

* Open Problems
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“Optimal” Routing

Input: the origin, a set of destinations, and the underlying distances.

Output: an order/permutation to visit the destinations, starting at the origin.

Objective: minimize,

» The latest visit time, equivalently total distance to travel iﬂ
* Traveling Salesperson Problem [1832]

» The average/sum of visit times
= Traveling Repair/Delivery-person Problem [Afrati et al. ‘85] X

» A norm of the visit times, e.g.,

» L,-norm of the visit times, equiv. Sum of Squares of visit times

= Traveling Firefighter Problem ‘



L,-TSP

* Objective: minimize the p-norm of the visit times T: IV — R.
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Interpolated other combinatorial optimization

problems: T

* Set Cover vs Min Sum Set Cover 2
[Feige, Lovasz, Tetali ‘04,
Golovin-Gupta-Kumar-Tangwongsan 08,
Bansal-Batra-Farhadi-Tetali ‘21]
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Does the objective affect the solution?
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Does the objective affect complexity?

* Yes
e even for trees

* p = o : Linear Time Solvable

* p = 1:Strongly NP-hard [Sitters ‘02]
v PTAS [Sitters ‘14]

op € (1, )
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L,-TSP = Segmented-TSP

Theorem 1 [FTT]: There is a PTAS for L,,-TSP on weighted tree-metrics,
and unweighted 2D-Euclidean.

Reduction to k-TSP enables a QPTAS
* Generalizing the result of [Archer-Williamson ‘03] for TRP
* Requiring 0(¢~tlogn) TSP sub-routes
* For a PTAS, we need a more general sub-problem

Idea: DP reduction to Segmented-TSP [Sitters ‘14], at the cost of (1 + €) multiplicative error.

Segmented-TSP:
* A generalization of k-TSP
* Given k deadlines, tq, ..., tg, and numbersngy < -+ < ny
* Decide whether it is possible to visit n; vertices by time t;, Vi

* If the answer is yes, an a-approx. solution is a solution for {at;}x), {1}k
* Segmented-TSP has PTAS for tree as well as Euclidean metrics [Sitters "14]



The Reduction

 Discovering structure in (approximately) optimal solutions
e Quantizing distances, allows the following, WLOG

d(i, j) € {0} U[O(n? /)] = {0} U [O(n*)] Vi, j
« Enables breaking into 7 = O(logn - 8_1) shortest paths between time spots
17<1+8)7"' 7(1—i_€)7

* Returning to the origin to further reduce the number of segments to
k=0(14¢?) ci=(14+¢)k>3

o Attimes \; := (14+¢)77-¢', Vi>0
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The Reduction (ctnd.)

* Generalizing the result by [Sitters “14]. For any L,,-TSP,
Lemma [FTT]: 3 a near optimal route, visiting new vertices during [34;_1, 4;],

remaining at the origin until 34;.
* Finding the best structured solution through Dynamic Programming

* DPJi,d], assuming d vertices are visited up to 4;, stores their minimum
possible contribution to the objective

* Update: considering O(nk) cases
* corresponding to the # of vertices visited up to

)\i—la 3)\7;_1 —+ )\z . (1 + 6)_k, R ,3)\1'_1 -+ )\z

* Each defines be a segmented-TSP instance with k = 0(1 + 6_2)
Lemma [FTT]: Any a approximation for Segmented-TSP
enables a (1 + €)a approximation for L,,-TSP.
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Cost of the optimal solution to a wrong problem

Can be (multiplicatively) unbounded
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All-norm-TSP

* Can we find a route that is approximately optimal with respect to any
norm of the visit times vector?
. 175 |
min sup

o mingre|| Ty |

* [Golovin-Gupta-Kumar-Tangwongsan ‘08] introduced a 16-approximation.

Theorem 2 [FTT]: We can find a route that is, simultaneously, 8-approximate with respect to any norm of T.

Idea: Partial Covering + a mild relaxation of k-MST
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The Partial Covering Algorithm

* Introduced by [Blum-Chalasani-Coppersmith-Pulleyblank-Raghavan-Sudan '94] for TRP
* Developed through [Goemans-Kleinberg ‘98, Chaudhuri-Godfrey-Rao-Talwar ‘03]

* Leads to 16-approximate all-norm-TSP [Golovin-Gupta-Kumar-Tangwongsan ‘08]
* b =1 (WLOG, the distance of the closest destination to the origin)

e c=2
1: procedure GEOMETRIC-COVERING(V/ s, d)
2 Algorithm Parameters: b € (0, 00), ¢ € (1, 00) In line-6, we use (DFS of) a good-k-tree:
3 g %.O _ o o e [Chaudhuri-Godfrey-Rao-Talwar '03]
4 while there remains destinations to visit do « a mild relaxation of k-MST
5: . > Conducting sub-tours * i.e., not larger than a k-TSP / k-stroll
6: C; < a maximal route of length <b-¢'. « found using a primal-dual method
7 Travel through C; (and return to the origin)
8 14 1+1
9 return an ordering o of V according to their

(first) visit time through the above loop.
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Steps in the Analysis

e Let TPV € [2¢, 20
e There is a k-path, no longer than 2t*1

* We have a good-k-tree, of total length no more than 2¢+1
* Hence, C;, 4 has at least k vertices
* Finally, we have 8-submajorization of the optimal route by ALG.
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Approximate All-norm-TSP can be impossible

Theorem 3 [FTT]: Guaranteeing an a-approximate all-norm-TSP, for line metric, is
impossible for a < 1.78.

e Starting at x = 0, and destinations at {-1}uU {b* —1:4i € [n]}
* This gives ¢ = 1.67 for b = 1.001,n = 2100

* The following numerical example, w/ similar structure, gives &« = 1.78

| | | | | | J
-2 0 2 4 6 8 10 12




16

Approximation ratio

Approximation ratio w.r.t. Lp-TSP objective
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Improved approximation for TFP

e Choosing b = ¢Y, with U uniformly distributed over [0,1]

E[(TALG)2] _ e+ 1

2
(TOPT)E S o - 2c¢”/Inc

* Optimizing, for ¢ =~ 2.54 we have
E[| T3] < 31.82|| 74413

e Resulting v/31.82 ~ 5.641 approximation for TFP.

Theorem 4 [FTT]: TFP can be 5.65 approximated on general metrics.
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Problems

 Unified algorithms for L_p TSP Problems?

* [in]approximability, e.g., what is the hardest L_p TSP?

e Multiple Vehicle/Depots

* Online problem

* Verifying the best norm for containing wildfires, pandemics, etc.

Thank you for joining!



